\(\int \frac {\sec ^5(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [554]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 359 \[ \int \frac {\sec ^5(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {8 a (a-b) \sqrt {a+b} \left (12 a^2+11 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^5 d}+\frac {2 \sqrt {a+b} \left (48 a^3-12 a^2 b+44 a b^2+25 b^3\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^4 d}+\frac {2 \left (24 a^2+25 b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^3 d}-\frac {12 a \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b^2 d}+\frac {2 \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 b d} \]

[Out]

8/105*a*(a-b)*(12*a^2+11*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+
b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^5/d+2/105*(48*a^3-12*a^2*b+44*a*b^2+
25*b^3)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x
+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d+2/105*(24*a^2+25*b^2)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c
)/b^3/d-12/35*a*sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/d+2/7*sec(d*x+c)^2*(a+b*sec(d*x+c))^(1/2)*tan
(d*x+c)/b/d

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 359, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3945, 4177, 4167, 4090, 3917, 4089} \[ \int \frac {\sec ^5(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {8 a (a-b) \sqrt {a+b} \left (12 a^2+11 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^5 d}+\frac {2 \left (24 a^2+25 b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{105 b^3 d}+\frac {2 \sqrt {a+b} \left (48 a^3-12 a^2 b+44 a b^2+25 b^3\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{105 b^4 d}-\frac {12 a \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{35 b^2 d}+\frac {2 \tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)}}{7 b d} \]

[In]

Int[Sec[c + d*x]^5/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(8*a*(a - b)*Sqrt[a + b]*(12*a^2 + 11*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]]
, (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(105*b^5*d) +
 (2*Sqrt[a + b]*(48*a^3 - 12*a^2*b + 44*a*b^2 + 25*b^3)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]
/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/
(105*b^4*d) + (2*(24*a^2 + 25*b^2)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(105*b^3*d) - (12*a*Sec[c + d*x]*Sqr
t[a + b*Sec[c + d*x]]*Tan[c + d*x])/(35*b^2*d) + (2*Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(7*b
*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3945

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*d^2*
Cos[e + f*x]*(d*Csc[e + f*x])^(n - 2)*(Sqrt[a + b*Csc[e + f*x]]/(b*f*(2*n - 3))), x] + Dist[d^3/(b*(2*n - 3)),
 Int[((d*Csc[e + f*x])^(n - 3)/Sqrt[a + b*Csc[e + f*x]])*Simp[2*a*(n - 3) + b*(2*n - 5)*Csc[e + f*x] - 2*a*(n
- 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n
]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4167

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
 + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*
B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4177

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(
e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Csc[e + f*x]*Cot[e + f*x]*((a + b*Csc[e + f*x])^
(m + 1)/(b*f*(m + 3))), x] + Dist[1/(b*(m + 3)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m +
2) + A*(m + 3))*Csc[e + f*x] - (2*a*C - b*B*(m + 3))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C,
 m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 b d}+\frac {\int \frac {\sec ^2(c+d x) \left (4 a+5 b \sec (c+d x)-6 a \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{7 b} \\ & = -\frac {12 a \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b^2 d}+\frac {2 \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 b d}+\frac {2 \int \frac {\sec (c+d x) \left (-6 a^2+a b \sec (c+d x)+\frac {1}{2} \left (24 a^2+25 b^2\right ) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{35 b^2} \\ & = \frac {2 \left (24 a^2+25 b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^3 d}-\frac {12 a \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b^2 d}+\frac {2 \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 b d}+\frac {4 \int \frac {\sec (c+d x) \left (-\frac {1}{4} b \left (12 a^2-25 b^2\right )-a \left (12 a^2+11 b^2\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^3} \\ & = \frac {2 \left (24 a^2+25 b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^3 d}-\frac {12 a \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b^2 d}+\frac {2 \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 b d}-\frac {\left (4 a \left (12 a^2+11 b^2\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^3}+\frac {\left (48 a^3-12 a^2 b+44 a b^2+25 b^3\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^3} \\ & = \frac {8 a (a-b) \sqrt {a+b} \left (12 a^2+11 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^5 d}+\frac {2 \sqrt {a+b} \left (48 a^3-12 a^2 b+44 a b^2+25 b^3\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^4 d}+\frac {2 \left (24 a^2+25 b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^3 d}-\frac {12 a \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b^2 d}+\frac {2 \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 b d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 12.02 (sec) , antiderivative size = 463, normalized size of antiderivative = 1.29 \[ \int \frac {\sec ^5(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {4 \sqrt {\sec (c+d x)} \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (4 a \left (12 a^3+12 a^2 b+11 a b^2+11 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+b \left (-48 a^3-12 a^2 b-44 a b^2+25 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+2 a \left (12 a^2+11 b^2\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{105 b^4 d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {a+b \sec (c+d x)}}+\frac {(b+a \cos (c+d x)) \sec (c+d x) \left (-\frac {8 a \left (12 a^2+11 b^2\right ) \sin (c+d x)}{105 b^4}+\frac {2 \sec (c+d x) \left (24 a^2 \sin (c+d x)+25 b^2 \sin (c+d x)\right )}{105 b^3}-\frac {12 a \sec (c+d x) \tan (c+d x)}{35 b^2}+\frac {2 \sec ^2(c+d x) \tan (c+d x)}{7 b}\right )}{d \sqrt {a+b \sec (c+d x)}} \]

[In]

Integrate[Sec[c + d*x]^5/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(4*Sqrt[Sec[c + d*x]]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(4*a*(12*a^3 + 12*a^2*b + 11*a*b^2 + 11*b^3)*Sqrt[
Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[
(c + d*x)/2]], (a - b)/(a + b)] + b*(-48*a^3 - 12*a^2*b - 44*a*b^2 + 25*b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*
x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a +
b)] + 2*a*(12*a^2 + 11*b^2)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*b^4*d
*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[a + b*Sec[c + d*x]]) + ((b + a*Cos[c + d*x])*Sec[c + d*x]*((-8*a*(12*a^2 + 11*b
^2)*Sin[c + d*x])/(105*b^4) + (2*Sec[c + d*x]*(24*a^2*Sin[c + d*x] + 25*b^2*Sin[c + d*x]))/(105*b^3) - (12*a*S
ec[c + d*x]*Tan[c + d*x])/(35*b^2) + (2*Sec[c + d*x]^2*Tan[c + d*x])/(7*b)))/(d*Sqrt[a + b*Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2342\) vs. \(2(325)=650\).

Time = 17.16 (sec) , antiderivative size = 2343, normalized size of antiderivative = 6.53

method result size
default \(\text {Expression too large to display}\) \(2343\)

[In]

int(sec(d*x+c)^5/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/105/d/b^4*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(24*a^3*b*sin(d*x+c)+19*a*b^3*sin(d*x+c)-2
5*b^4*sin(d*x+c)-6*a^2*b^2*sin(d*x+c)+48*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-
csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*b+44*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2+44
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x
+c)/(cos(d*x+c)+1))^(1/2)*a*b^3+25*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^4*cos(d*x+c)^2+48*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^4*c
os(d*x+c)^2+50*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^
(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^4*cos(d*x+c)+96*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^4*cos(d*x+c)-48*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*a^3*b-12*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b
)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2-44*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*E
llipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^3-25*a*b^3*cos(d*x+c
)*sin(d*x+c)+48*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^
(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^4+3*a*b^3*tan(d*x+c)*sec(d*x+c)-24*a^3*b*cos(d*x+c)*sin(d*x+c)+44*a
^2*b^2*cos(d*x+c)*sin(d*x+c)+25*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c
),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^4-25*tan(d*x+c)*b^4+44*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2
*b^2*cos(d*x+c)^2+44*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ellipti
cE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3*cos(d*x+c)^2-96*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+
b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*b*cos(d*x+c)-
24*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d
*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2*cos(d*x+c)-88*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^3*cos(d*x+c)+96*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b
))^(1/2))*a^3*b*cos(d*x+c)+88*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2*cos(d*x+c)+88*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3*co
s(d*x+c)-48*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/
2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*b*cos(d*x+c)^2-12*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2)
)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2*cos(d*x+c)^2-44*El
lipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*a*b^3*cos(d*x+c)^2+48*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(
d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b*cos(d*x+c)^2-15*b^4*tan(d*x+c)*sec
(d*x+c)-15*b^4*tan(d*x+c)*sec(d*x+c)^2-6*a^2*b^2*tan(d*x+c)+48*a^4*cos(d*x+c)*sin(d*x+c)+3*a*b^3*tan(d*x+c))

Fricas [F]

\[ \int \frac {\sec ^5(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{5}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^5/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sec(d*x + c)^5/sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \frac {\sec ^5(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\sec ^{5}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate(sec(d*x+c)**5/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**5/sqrt(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sec ^5(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{5}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^5/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^5/sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sec ^5(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{5}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^5/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^5/sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^5(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^5\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(1/(cos(c + d*x)^5*(a + b/cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)^5*(a + b/cos(c + d*x))^(1/2)), x)